

FOODWEB -Baltic environment, food and health: from habits to awareness

Eutrophication impacts of the food chain on the Baltic Sea

Yrjö Virtanen, Senior Research Scientist, MTT

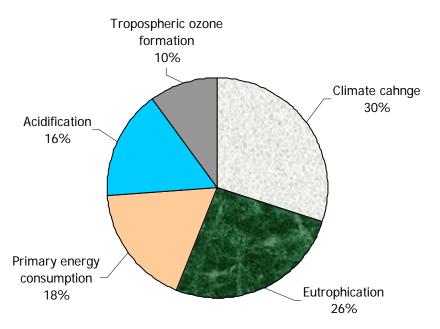
EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Ecological impacts of the food chain

- Resource appropriation (land, abiotic and biotic resources)
- Emissions to air and water, climate change, acidification, tropospheric ozone formation, stratospheric ozone depletion, eutrophication, human health impacts, ecotoxic impacts
- Genetic impacts
- Changes in eco-system balances, biodiversity effects, human health and welfare effects, evolution effects

Eutrophication impacts of the food chain - eutrophication

- A major problem in the Baltic Sea expert evaluation of the relative importance at about the same level as that of the climate change impact (26%/30%) for Finland
- A state where high nutrient concentrations stimulate the growth of algae, which leads to imbalanced functioning of the system.
- Algal blooms, slime formation, increase in water turbidity, accelerated oxygen depletion
- Nitrogen and phosphorus loads are the main cause of the eutrophication in the Baltic Sea
- Atmospheric deposition (NO_x and NH₃) contribute about 25%



Relative importances of different environmental impact categories for Finland

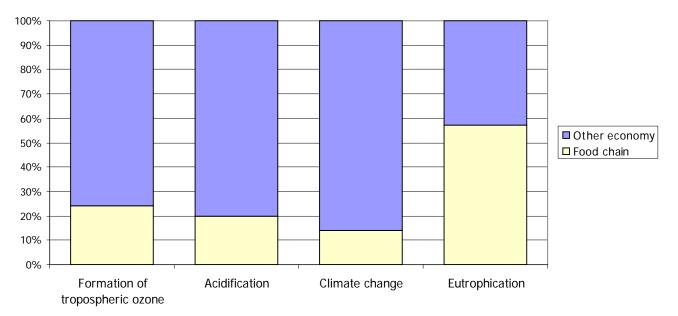
Source: Nissinen, A., Grönroos, J., Heiskanen, E., Honkanen, A., Katajajuuri, J.-M., Kettunen, J., Kurppa, S., Mäkinen, T., Seppälä, J., Silvenius, F., Timonen, P., Virtanen, Y., Voutilainen, P. 2005. Development of benchmarking for the environmental impacts of different products, services and consumption patterns. In: Sustainable Consumption: The Contribution of Research, Workshop 10-12 February 2005, Gabels Hus, Oslo, p. 98-114. Norwegian University for Science and Technology (NTNU), Industrial Ecology program, Report 1/2005, Trondheim, Norway. ISBN 82-7948-046-3.

Eutrophication impacts of the food chain – Economic Input-Output Life Cycle Assessment (EIOLCA) model

- Belongs to the family of Materials Flow Analysis (MFA) models
- Is a systematic approach used to explore how materials appear in economic systems, and how they affect the environment
- Constitutes of the internal relationships of the economic system and its interrelations with the environment



- Flow chart of the food chain model

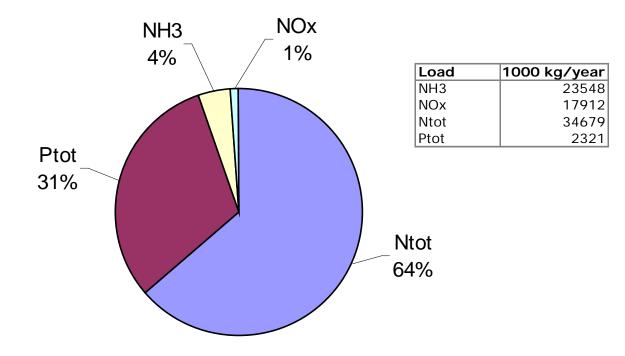


Eutrophication impacts of the food chain – Of the domestic total of the national economy (Finland)

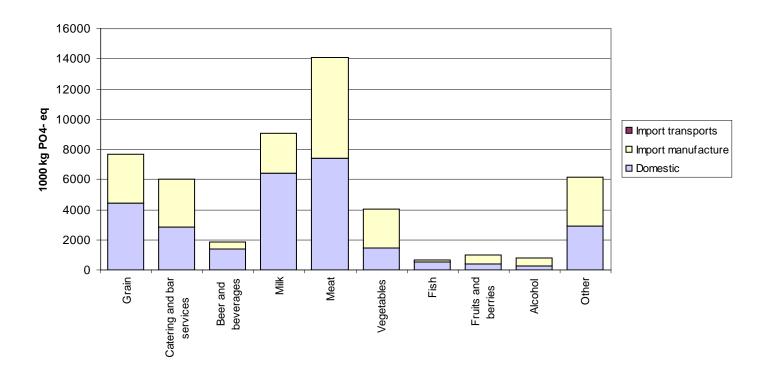
Impact	Food chain	Other economy
Formation of troposhrecic ozone	24%	76%
Acidification	20%	80%
Climate cahnge	14%	86%
Eutrophication	57%	43%

- Total, domestic and imported (Finland)

Acidification18(61%)12(39%)30 Milj. AEeqClimate change9108(61%)5814(39%)14922 Milj. kg CO2 eqEutrophication23(61%)14(39%)37 Milj. kg PO4- eqPer person and dayTropospheric ozone formation0.0190.0090.028 person ppm hotAcidification0.0090.0060.015 AEeqClimate change4.73.07.7 kg CO2 eq	Environmental impacts of the food chain (Finland)							
Tropospheric ozone formation0.0190.0090.028 person ppm horAcidification0.0090.0060.015 AEeqClimate change4.73.07.7 kg CO2 eq	Tropospheric ozone formation Acidification Climate change	37 [*] (68%) 18 [*] (61%) 9108 [*] (61%)	17 (32%) 12 (39%) 5814 (39%)) 55 Milj. person ppm hour 30 Milj. AEeq 14922 Milj. kg CO2 eq				
	Tropospheric ozone formation Acidification	0.009	0.006	•				



By loads (Finland)



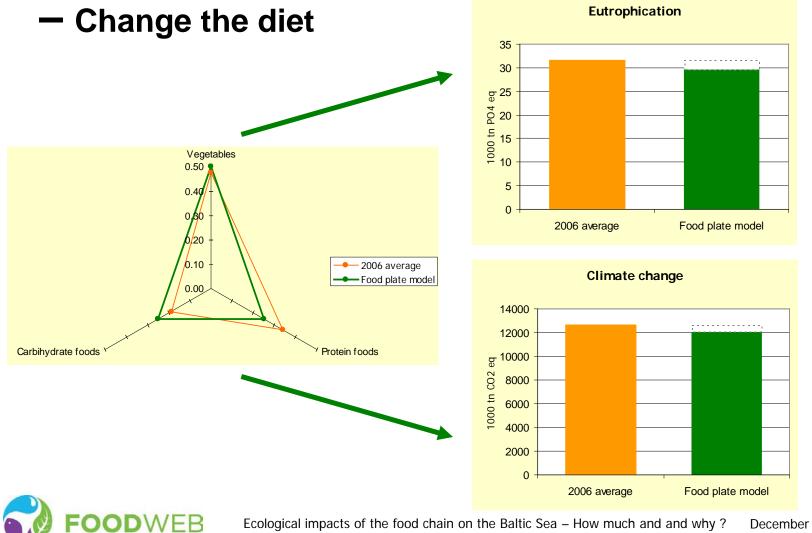
Eutrophication impacts of the food chain – By product groups (Finland)

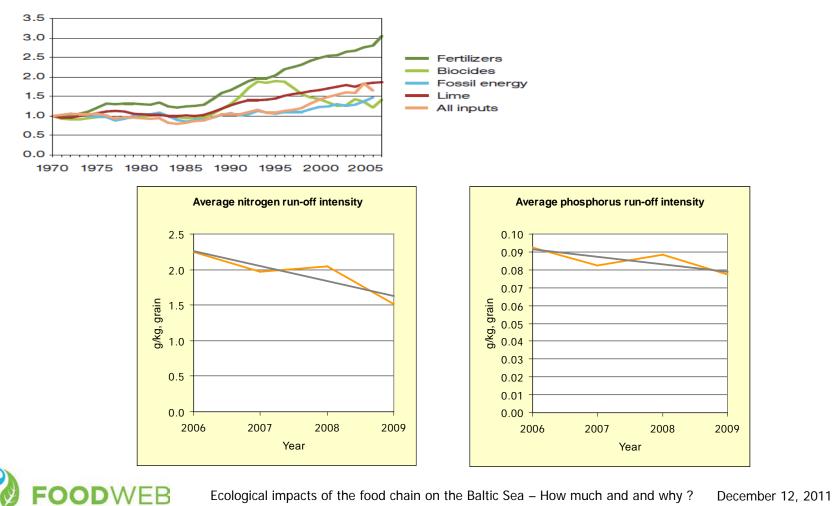
- Per kg of raw material (Finland, Estonia, Latvia)

	Finland	Estonia	Latvia
Beef	51.5	61.9	60.5
Pork	15.4	17.5	12.7
Poultry	7.1	8.0	6.0
Eggs	16.1	18.3	13.3
Milk	3.3	3.9	3.9
Cereals	5.0	5.7	4.0
Potato	0.7	0.7	0.8

NOTE: Values are computed with the Finnish food chain model (KETJUVASTUU). Estonian and Latvian values are thus rough estimates.

— Options to reduce them?

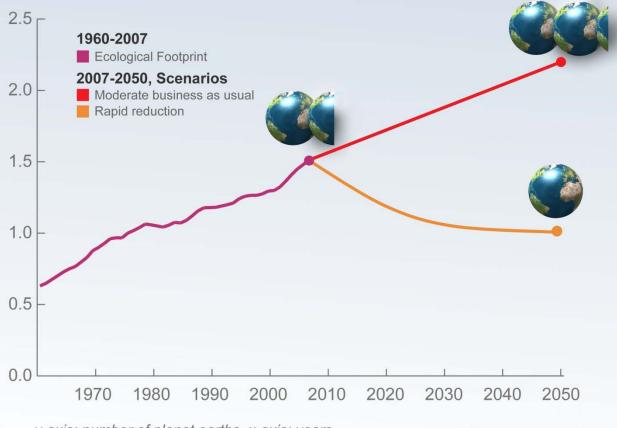

- 1) Change the diet, choose foodstuffs of lower eutrophication intensity
- 2) Reduce the eutrophication intensity of the food raw materials
- 3) Increase the consumption of the imported foodstuff



Eutrophication impacts of the food chain – Reduce the eutrophication intensity of the raw materials

Increase the consumption of the imported foodstuff

- Would be an effective reduction measure for the food production based eutrophication impacts on the Baltic Sea
- Imports should come from outside the Baltic Sea catchment region
- Would not reduce the impacts of food consumption
- Could introduce new sustainability risks in the long run through the trade-off effects, for example those related to global food availability



- Global ecological footprint 1967-2010

y-axis: number of planet earths, x-axis: years

Source: GLOBAL FOOTPRINT NETWORK. ECOLOGICAL FOOTPRINT ATLAS 2010